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As humanity advances towards the exploration and potential colonization of Mars, the harsh surface conditions 

necessitate innovative solutions for sustainable habitation. This review examines the concept of underground 

habitation on Mars, focusing on the challenges posed by the Martian environment, the diverse terrain types, and 

the application of machine learning in analyzing vast datasets for optimal site selection. We discuss the findings 

from past Mars missions, the composition of Martian soil, and the criteria for selecting landing sites. Furthermore, 

we explore the role of machine learning in processing and interpreting large volumes of data from various sources, 

including satellite imagery and rover observations. This review aims to provide a comprehensive understanding 

of the current state of Mars exploration and the potential for underground habitation, highlighting the intersection 

of planetary science, geology, and artificial intelligence in advancing our capabilities for future Mars missions. 

1. Introduction 

1.1 Background on Mars Exploration 

Mars, often referred to as the Red Planet, has long captivated the imagination of scientists and space enthusiasts 

alike. The journey of Mars exploration began with early flyby missions and has progressed to sophisticated rovers 

and orbiters that continue to unveil the planet's secrets. Key milestones in Mars exploration include: 

• 1964: Mariner 4, NASA's first successful Mars flyby mission 

• 1971: Mariner 9, the first spacecraft to orbit another planet 

• 1975: Viking 1 and 2 missions, which conducted extensive biological experiments 

• 1996: Mars Pathfinder and the Sojourner rover 

• 2003: Mars Exploration Rovers Spirit and Opportunity 

• 2012: Curiosity Rover 

• 2021: Perseverance Rover and Ingenuity helicopter 

These missions have significantly advanced our understanding of Mars' geological diversity, atmospheric 

characteristics, and the historical presence of water, providing crucial information for future exploration and 

potential habitation [1]. 

1.2 Challenges of Mars' Surface Conditions 

The Martian surface presents numerous challenges for long-term human presence: 

1. Harsh Climate: Extreme temperature fluctuations ranging from 20°C to -90°C near the equator, and as 

low as -150°C near the poles [2]. 

2. Dust Storms: Intense, planet-wide storms that can last for weeks or months, potentially interfering with 

solar power generation and equipment functionality [3]. 

3. Radiation Exposure: Due to the lack of a global magnetic field and thin atmosphere, Mars' surface is 

exposed to high levels of cosmic rays and solar radiation [4]. 

1.3 Advantages of Underground Habitation 

 
*UG Scholar, Aerospace Engineering, School of Mechanical Engineering, Lovely Professional University, Punjab. 

Corresponding Author: aakaash2589@gmail.com 
† Received: 28-April-2024 || Revised: 10-May-2024 || Accepted: 19-May-2024 || Published Online: 30-May-2024 

 

https://ijarise.org/
https://creativecommons.org/licenses/by/4.0/


 
 
  IJARISE2415 

   

Given these challenges, underground habitation offers several compelling advantages: 

1. Radiation Protection: Martian soil and rock can provide natural shielding against harmful radiation [5]. 

2. Meteorite Impact Protection: Underground structures are inherently protected from meteorite impacts 

[6]. 

3. Thermal Stability: Subsurface environments offer more stable temperatures compared to the surface [7]. 

2. Martian Terrain and Geology 

2.1 Overview of Martian Terrain 

Mars presents a diverse landscape with various terrain types, each offering unique characteristics and challenges 

for exploration and habitation: 

1. Plains: Vast, relatively flat areas such as Amazonis Planitia and Elysium Planitia, often resulting from 

ancient volcanic activity [8]. 

2. Valleys: Features like Nanedi Valles, indicative of past water flow and potential subsurface ice [9]. 

3. Craters: Ubiquitous impact craters such as Gale Crater and Jezero Crater, which can reveal subsurface 

composition and potentially harbor resources [10]. 

2.2 Soil Composition and Geological Features 

Martian soil, or regolith, is a complex mixture of fine dust and broken rock. Key components include: 

1. Basaltic Minerals: Pyroxene, olivine, and plagioclase feldspar [11]. 

2. Iron Oxides: Responsible for the characteristic red color of Martian soil [12]. 

3. Sulfur Compounds: Sulfate minerals indicating past presence of liquid water [13]. 

4. Silica: High concentrations in certain regions suggesting hydrothermal activity [14]. 

2.3 Criteria for Selecting Landing Sites 

The selection of landing sites on Mars is guided by several key criteria: 

1. Scientific Value: Potential to address key questions about Mars' history, climate, and geology [15]. 

2. Resource Availability: Presence of water ice and useful minerals for in-situ resource utilization [16]. 

3. Safety and Accessibility: Factors such as terrain roughness, slope, and altitude [17]. 

4. Environmental Conditions: Consideration of weather patterns, radiation levels, and dust activity [18]. 

3. Role of Machine Learning in Mars Exploration 

3.1 Analyzing Vast Martian Data 

Machine Learning (ML) has become an indispensable tool in processing and analyzing the enormous volumes of 

data collected from Mars missions. ML techniques are employed to: 

1. Process high-resolution imagery from satellites and rovers [19]. 

2. Classify terrain types and identify geological features [20]. 

3. Detect patterns indicating past water activity or potential habitability [21]. 

4. Predict environmental conditions at potential landing sites [22]. 

3.2 Advanced Image Analysis and Terrain Mapping 

ML algorithms, particularly in image processing, play a crucial role in understanding the Martian landscape: 

1. Image Preprocessing: Techniques such as color conversion, cropping, and normalization enhance image 

quality for analysis [23]. 
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2. Texture Analysis: Local Binary Pattern (LBP) is used for capturing micro-patterns in surface imagery 

[24]. 

3. Edge Detection: Sobel filters highlight boundaries within images, crucial for identifying structural 

features [25]. 

4. Image Segmentation: The Watershed algorithm is employed to segment complex, overlapping regions 

in Martian terrain [26]. 

5. Terrain Classification: ML models classify different terrain types (craters, valleys, plateaus, plains) based 

on gradient magnitudes [27]. 

3.3 Weather Prediction 

ML models, particularly linear regression, are used to predict Martian weather conditions: 

1. Feature Selection: Relevant features such as 'sol' (Martian day), 'ls' (areocentric longitude), and 'month' 

are used for training models [28]. 

2. Prediction Models: Separate models are trained to predict minimum temperature, maximum temperature, 

and pressure [29]. 

3. Safety Classification: Predictions are categorized into 'Safe', 'Vulnerable', or 'Hazard Prone' based on 

predefined thresholds [30]. 

4. Case Studies 

4.1 HiRISE on Mars Reconnaissance Orbiter 

The High Resolution Imaging Science Experiment (HiRISE) has employed clustering algorithms to classify 

different terrain types based on texture and morphology, aiding in the identification of features such as dunes, 

rock outcrops, and sedimentary layers [31]. 

4.2 Curiosity Rover's Gale Crater Exploration 

In Gale Crater, clustering algorithms have been applied to group similar geological units, providing insights into 

ancient climatic conditions and the habitability of Mars [32]. 

5. Conclusion 

The exploration of Mars and the potential for underground habitation represent a frontier where planetary science, 

geology, and artificial intelligence converge. As we continue to gather data from ongoing and future missions, the 

role of machine learning in processing and interpreting this information will become increasingly critical. The 

challenges posed by the Martian environment necessitate innovative approaches to site selection and habitat 

design, with underground solutions offering promising advantages. 

The diverse Martian terrain, from vast plains to deep craters, presents both opportunities and challenges for future 

exploration and settlement. By leveraging advanced image analysis techniques and machine learning algorithms, 

we can better understand these landscapes and identify optimal locations for both scientific study and potential 

human habitation. 

As we look towards the future of Mars exploration, the integration of machine learning with traditional scientific 

methods will be key to unlocking the secrets of the Red Planet and paving the way for sustainable human presence. 

The ongoing development of these technologies and methodologies will not only advance our understanding of 

Mars but also contribute to broader applications in planetary science and space exploration. 
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